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Abstract Quantitative trait loci (QTL)/association map-

ping aims at finding genomic loci associated with the

phenotypes, whereas genomic selection focuses on breed-

ing value prediction based on genomic data. Variable

selection is a key to both of these tasks as it allows to (1)

detect clear mapping signals of QTL activity, and (2)

predict the genome-enhanced breeding values accurately.

In this paper, we provide an overview of a statistical

method called least absolute shrinkage and selection

operator (LASSO) and two of its generalizations named

elastic net and adaptive LASSO in the contexts of QTL

mapping and genomic breeding value prediction in plants

(or animals). We also briefly summarize the Bayesian

interpretation of LASSO, and the inspired hierarchical

Bayesian models. We illustrate the implementation and

examine the performance of methods using three public

data sets: (1) North American barley data with 127 indi-

viduals and 145 markers, (2) a simulated QTLMAS XII

data with 5,865 individuals and 6,000 markers for both

QTL mapping and genomic selection, and (3) a wheat data

with 599 individuals and 1,279 markers only for genomic

selection.

Introduction

The use of DNA marker information for plant (or animal)

breeding has become increasingly popular. The traditional

Marker assisted selection (MAS) method (Dekkers and

Hospital 2002), which uses only a small number of markers

to predict breeding values, may have poor predictive ability

due to the fact that only a limited proportion of genetic

variance can be captured by the markers (Goddard and

Hayes 2007). An alternative approach, known as genomic

selection (Meuwissen et al. 2001; Heffner et al. 2009;

Piepho 2009) can utilize genome-wide information that

results in enhanced predictive ability. A fundamental

requirement for implementing genomic selection is that a

dense set of markers through the whole genome need to be

genotyped, thus guaranteeing that most QTLs are in link-

age disequilibrium (LD) with at least one marker. This has

become increasingly possible because of recent advances

in laboratory techniques (Bernardo and Yu 2007). Another

closely related topic called QTL/association mapping aims

at finding the genomic loci which are associated with the

phenotypes and estimating their effect sizes. When a dense

set of markers are used, nearby markers can approximately

represent QTLs (Xu 2003).

In quantitative genetics, a multiple linear regression

model is often used to describe the relationship between

phenotypes and markers. All marker effects can be
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simultaneously estimated from the model, and then based

on the estimates, one can perform (1) hypothesis testing: to

identify the QTL/association signals; (2) prediction: to

calculate the genomic breeding values for a new data set.

For oligogenic traits, only a small proportion of markers

are associated with the trait variation, and most markers

have zero effects in theory. Including all of them into the

model may lead to poor accuracy of the estimated marker

effects, and reduce the reliability of both hypothesis testing

and prediction. In an even worse case, when the number of

markers is larger than the number of individuals in the

sample, the model is over-saturated, and ordinary least

squares estimation is not applicable. This motivates us to

implement variable selection (Broman and Speed 2002;

Sillanpää and Corander 2002), to include only a trait-

associated subset of markers into the model. One popular

way for achieving this goal is to implement a penalized

regression approach, named LASSO (least absolute

shrinkage and selection operator) (Tibshirani 1996), which

can provide sparsity inducing estimation of regression

coefficients by adding ‘1 penalty functions to the tradi-

tional least squares. LASSO, and its extensions including

Elastic net (Zou and Hastie 2005) and Adaptive LASSO

(Zou 2006) have been used in various QTL mapping or

genomic selection studies (Chen and Cui 2010; Cho et al.

2010; Wang et al. 2010; Usai et al. 2009; Harris and

Johnson 2010). Furthermore, it is also well known that

LASSO has a Bayesian interpretation (Tibshirani 1996),

that is the ‘1 penalty function is equivalent to a double

exponential or Laplace prior distribution. Figueiredo

(2003) and Park and Casella (2008) suggested a Bayesian

hierarchical model using a scale mixture parametrization to

mimic LASSO, under which a Markov Chain Monte Carlo

(MCMC) can be implemented to provide shrinkage esti-

mation. Bayesian LASSO has been applied both to identify

QTLs (Yi and Xu 2008; Li et al. 2011) and to predict

genomic breeding values (De Los Campos et al. 2009;

Legarra et al. 2011).

In this article, we provide an overview of LASSO, its

extensions including Elastic net and Adaptive LASSO, as

well as its related Bayesian model, and their applications in

QTL mapping and genomic selection. Although detecting

QTL signals and predicting genomic values are different

problems in principle, our view is that both of them can be

solved efficiently using the LASSO and its related meth-

ods. The structure of the article is the following. We first

describe the multiple regression model which we consider

for both QTL mapping and genomic selection problems.

We then summarize the theory and computations involved

in the LASSO, and its generalizations, and finally, we

describe the example data analyses using the North

American Barley data (Tinker et al. 1996), the QTL/MAS

XII simulated data (Lund et al. 2009), and the wheat data

from International Maize and Wheat Improvement Center

(CIMMYT) (Crossa et al. 2010), respectively.

Model and problems

Because of the continuous nature of quantitative traits, it is

intuitive to use a multiple linear regression model to

describe the relationship between trait values and marker

loci. A typical regression model is:

yi ¼ b0 þ
Xp

j¼1

xijbj þ ei; ð1Þ

where yi (i ¼ 1; . . .; n) is the phenotypic value of the ith

individual in the mapping population, b0 is the intercept, xij

is the genotypic value of the jth marker for individual i, bj

is the effect of marker j, and ei is the random error assumed

to follow a normal distribution N(0, re
2) with mean zero

and variance re
2 independently for i ¼ 1; . . .; n: The

mutually independent residual terms ei (i ¼ 1; . . .; n)

represent all unknown factors that may contribute to the

trait variation. Note that the assumption of independent

errors with the constant variance is often a simplification in

plant breeding (see Burgueño et al. 2012; Piepho et al.

2012). The genotype value xij is defined as

xij ¼
1 if marker genotype is AA,

0 if marker genotype is AB,

�1 if marker genotype is BB.

8
<

: ð2Þ

In QTL mapping with a dense set of markers, we are

interested in estimating the marker effects b ¼
fb1; . . .; bpg; and deciding which markers are in linkage

disequilibrium (LD) with QTLs. Therefore, QTL mapping

can be regarded as a variable selection problem. On the

other hand, in genomic selection, we are not interested in

the exact location of the QTLs, but we are mainly

concerned with calculating the genome-enhanced

breeding values (GEBV)

GEBV ¼ xnewb̂; ð3Þ

where xnew is a matrix containing genotype values from

new individuals who do not have their phenotypes mea-

sured yet, and b̂ are certain estimates of the regression

coefficients b: When the true breeding values (TBV) for

the new individuals are available (as is the case for simu-

lated data), the correlation coefficient between TBV and

GEBV corðTBV, GEBVÞ can be used to measure the pre-

diction accuracy. Therefore, genomic selection can be

viewed as a prediction problem. Since it is necessary to

estimate the parameters based on the training data sets

before prediction, how to estimate the regression coeffi-

cients b accurately is a primary question. The ordinary

420 Theor Appl Genet (2012) 125:419–435

123



least squares (OLS) method, which is a common way to

estimate regression coefficients in statistics has two defi-

ciencies: (1) Although an OLS estimator gives an unbiased

estimate of the regression coefficients, it often shows large

variance, which will cause some inaccuracy in the pre-

dicted values. (2) OLS estimation is not available for the

situations where the number of explanatory variables is

larger than the number of observations, the so called p [ n

problem. Instead, a relatively stable estimator will be

beneficial to both QTL identification and genomic breeding

value prediction problems, since it often helps to increase

the prediction accuracy, and also the power to detect QTL

signals in hypothesis testing. In addition, in genomic

selection or QTL mapping with a dense set of markers, it is

common to have the number of markers being genotyped

much larger than the number of individuals. Therefore, it is

necessary to seek a regression estimator with small vari-

ance, and which is able to handle situations where p [ n.

Finally, when the marker density is high, QTL may only be

present in a few marker intervals and most of the markers

may have zero or close to zero effects in theory. In this

case, it is preferable to obtain a sparse model in order to

find the markers associated with the traits easier. Next, we

provide an overview of the LASSO-penalized regression

method (Tibshirani 1996) and its generalizations called

Elastic net (Zou and Hastie 2005) and Adaptive LASSO

(Zou 2006), which are able to do the parameter estimation

and variable selection simultaneously.

LASSO and its extensions

Theory

The LASSO regression can be specified as estimating the

regression coefficients b ¼ fb0; b1; . . .; bpg; by minimizing

the penalized sum of squares
Pn

i¼1ðyi � b0 �
Pp

j¼1 xijbjÞ
2þ

k
Pp

j¼1 jbjj: Here the sum of absolute values (‘1 norm) of

the regression coefficients k
Pp

j¼1 jbjj is the penalty func-

tion, and k� 0 is called shrinkage factor, which needs to be

specified by the analyst. By adding the penalty function to

the residual sum of squares and setting k larger than zero,

the LASSO is able to shrink the least square estimators

towards zero, and reduce the variances. Furthermore, dif-

ferent from an older penalized regression approach called

Ridge regression (Hoerl and Kennard 1970), which adopts

‘2 norm penalty function k
Pp

j¼1 b2
j ; the LASSO is able to

shrink some of the regression coefficients exactly to zero

because of the non-differentiable property of the ‘1 norm

penalty. The sparsity of the model is determined by the

value of the shrinkage factor. Therefore, the LASSO can

also be regarded as a variable selection method for the

regression model.

Compared with Ridge regression, LASSO has two dis-

advantages: (1) when multicollinearity is shown to occur

among the explanatory variables, LASSO tends to select

only a single variable from a group of highly correlated

variables. (2) When p [ n, at most n explanatory variables

can be selected into the model. In a dense set of markers, it

is common that those markers are highly correlated among

them. Particularly, in a genomic selection problem, the

limitation that only n variables can be selected by maxi-

mum may cause discarding of some important markers,

that are contributing to the prediction accuracy, out of the

model. To overcome these limitations, Elastic net (Zou and

Hastie 2005) adopts a penalty function with the convex

combination of ‘2 and ‘1 norms as

PaðbÞ ¼ k½ð1� aÞ 1
2

Xp

j¼1

b2
j þ a

Xp

j¼1

jbjj�; ð4Þ

where

a ¼ 0 : Ridge regression,

0\a\1 : Elastic net,

a ¼ 1 : LASSO.

8
<

: ð5Þ

It can be seen that Elastic net penalty is a compromise

between ‘2 and ‘1 norm penalties. Since PaðbÞ is non-

differentiable at the zero point, Elastic net keeps the good

property of LASSO that it can shrink regression coeffi-

cients exactly to zero. A difference from LASSO is that,

when a group of markers with high pairwise correlations is

present, Elastic net tends to select all of them into the

model and assign equal regression coefficients to them.

Furthermore, Elastic net is able to select more than n

explanatory variables when p is larger than n. Therefore,

Elastic net combines the advantages from both LASSO and

Ridge regression.

From another point of view, a good variable selection

method should satisfy the following oracle properties (Fan

and Li 2001): (1) Consistency of variable selection

choosing the correct non-zero coefficients into the model

with probability tending to 1 with increasing sample size;

and (2) unbiasness of parameter estimation assuming the

true subset of explanatory variables with non-zero effects,

the estimator of each non-zero coefficient follows asymp-

totic normality similarly as the OLS estimator. LASSO has

been shown not to follow the oracle properties by Fan and

Li (2001), and Zou (2006). First, it has been proven that

LASSO only does consistent variable selection under the

so-called irrepresentable condition (Zhao and Yu 2006), or

an equivalent neighborhood stability condition (Meins-

hausen and Bühlmann 2006). Those are rather restrictive

conditions that many data sets in practice may not satisfy.
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Second, LASSO tends to underestimate the regression

coefficients. For improvement, Fan and Li (2001) proposed

a non-convex penalized regression method called smoothly

clipped absolute deviation (SCAD) penalty regression. Due

to its non-convex feature, the computation might be chal-

lenging. Zou (2006), on the other hand, proposed a two-

step procedure named Adaptive LASSO for improvement

of standard LASSO which still maintains the ease of

computation. In the first step, a standard estimation meth-

ods such as the OLS is applied to the data, so that the initial

estimates b̂init;j are obtained. In the second step, a weighted

‘1 norm penalized function is specified by

k
Xp

j¼1

wjjbjj; ð6Þ

where wj ¼ 1=jb̂init;jj (j ¼ 1; . . .; p), and based on (6) the

adaptive LASSO estimates can be computed. By assigning

such data dependent weights to each local (marker specific)

penalty term, Adaptive LASSO enlarges the penalties for

variables with zero coefficients and relaxes the shrinkages

for those with non-zero coefficients, and therefore it

reduces some bias. Zou (2006) showed that Adaptive

LASSO enjoys oracle properties under a weaker condition

than the irrepresentable condition. Meanwhile, Zou (2006)

demonstrated that the same algorithms that fit the LASSO

problem can be used for Adaptive LASSO with the same

computation costs. Furthermore, for a high dimensional

data where p [ n, the OLS estimates are not available for

weight calculation. The estimates of Ridge regression (Zou

2006), Marginal regression (Huang et al. 2008) and stan-

dard LASSO (Bühlmann and van de Geer 2011) have been

suggested as alternative choices. Since in practice, the

performance of Adaptive LASSO might be sensitive to the

choices of those initial estimates, a better strategy is to

re-estimate the weights based on the current estimates of

the regression coefficients in each iterative step. This can

be implemented under both frequentist (Bühlmann and

Meier 2008) and Bayesian (Sun et al. 2010; Mutshinda and

Sillanpää 2010; Li and Sillanpää 2012) frameworks. More

discussion on the Bayesian interpretation of LASSO is

presented below. Other improved approaches, which

address the problems of LASSO’s biased estimation or

variable selection consistency, include LASSO-OLS hybrid

(Efron et al. 2004), Relaxed LASSO (Meinshausen 2007)

and Thresholded LASSO (Zhou 2010).

Various algorithms for finding the LASSO (or Elastic

net and Adaptive LASSO) solution have been developed,

including a homotopy algorithm (Osborne et al. 2000), the

least angle square algorithm (LARS) (Efron et al. 2004),

and a coordinate descent algorithm (Friedman et al. 2007).

The coordinate descent algorithm, which is perhaps the

most efficient algorithm for LASSO computation, is used

in our example analyses. A description of the algorithm can

be found in the appendix.

Selection strategies for shrinkage factor

The LASSO and its extension methods provide a potential

opportunity to select markers which are highly correlated

with the phenotype and discard those with negligible

effects. An important remaining issue is how to choose the

shrinkage factor k, which decides (1) the number of

markers remaining in the model, and (2) the level of

shrinkage for the marker effects. In the following, we

discuss two possible strategies for selecting an ‘optimal’

shrinkage factor from the perspective of prediction and

variable selection, respectively.

Cross validation

Cross validation (CV) (see Hastie et al. 2009) is perhaps

the most common criterion for deciding the LASSO

shrinkage factor. It aims to find a model that has the best

predictive ability. In a CV procedure, we first need to

randomly divide data into V non-overlapping roughly

equal-sized parts with approximate m individuals in each

part. In turn, we take each single part as the validation data

denoted by xv and yv (v 2 f1; . . .;Vg), and the remaining

V - 1 parts as the training data denoted by x�v and y�v:

The model is used to fit the training data with a specific

choice of k and then is applied to the validation data to

obtain the prediction of yv as ŷvðkÞ: The averaged predic-

tive ability of the model can be evaluated by

PCVðkÞ ¼
1

V
Pðyv; ŷvðkÞÞ; ð7Þ

where the function Pðyv; ŷvðkÞÞ is a certain metric of the

prediction accuracy. For a regression model, the mean

squared prediction error is often used as the metric of the

prediction accuracy, which is defined as

Pðyv; ŷvðkÞÞ ¼
1

m
ðyv � ŷvðkÞÞ

Tðyv � ŷvðkÞÞ; ð8Þ

In this case we are interested in obtaining an optimal

shrinkage factor k̂ which minimizes the averaged predic-

tion error in (7).

Bayesian information criterion

We are looking forward to a shrinkage factor leading to a

model that is able to (1) give accurate predictions, or (2)

identify the true model structure (i.e. detect QTLs). How-

ever, in practice, a shrinkage factor chosen by the cross

validation often leads to a model with too many non-zero

effects (Bühlmann and van de Geer 2011; Xu 2007), so that
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the true QTL signals are not clear. Therefore, an alternative

criterion is required, which may choose a larger k in order

to produce a sparser model. Zou et al. (2007) suggested a

Bayesian information criterion (BIC) as a good model

selection criterion for achieving this goal. The BIC crite-

rion aims to find k that minimizes the following score

function

BIC ¼ log

Pn
i¼1ðyi � b0 �

Pp
j¼1 xijbjÞ2

n
þ logðnÞ

n
dfðkÞ:

ð9Þ

The first term is simply the log sum of squares function

measuring the model fit, and the second term includes the

degree of freedom dfðkÞ; which can be estimated by the the

number of non-zero regression coefficients estimated from

LASSO. Therefore, BIC can be regarded as a compromise

between model fitting and model complexity. Zou et al.

(2007) showed that BIC is a more suitable criterion for

determining k than other approaches such as cross valida-

tion, Mallow’s Cp (Efron et al. 2004) and Akaike infor-

mation criterion (AIC) (Akaike 1974) from the perspective

of variable selection, since it tends to give a sparser model.

Sun et al. (2010) discussed using BIC to select hyper-

parameters for Bayesian Adaptive LASSO in QTL

mapping.

Chen and Chen (2008) claimed that BIC was still a too

liberal criterion for the high dimensional data, and they

developed extended Bayesian information criterion

(EBIC), which can achieve more conservative variable

selection. EBIC combined with LASSO has been applied to

QTL mapping in Chen and Cui (2010).

LASSO and hypothesis testing

As we mentioned earlier, LASSO usually does not per-

form consistent variable selection. Nevertheless, LASSO

was demonstrated to have a nice screening property

meaning that by properly setting the shrinkage factor and

by assuming that all the true non-zero regression coeffi-

cients are sufficiently large, there is high probability that

the set of explanatory variables selected by LASSO

contains the true set of effective variables (Meinshausen

and Bühlmann 2006). At the same time, it is likely that

the set of markers selected by LASSO with non-zero

estimated effects contain some false selected signals.

Perhaps, a hypothesis testing can be used for error con-

trol in order to judge the true QTL signals based on the

LASSO solution (Wu et al. 2009), as what have fre-

quently been done in many single locus analyses.

Unfortunately, unlike the OLS method, LASSO cannot

directly provide a test statistic or confidence interval for

each estimate, and therefore a hypothesis testing cannot

be directly applied. Recently, Wasserman and Roeder

(2009) proposed a two-stage procedure for high-dimen-

sional data. The data is first randomly split to two equal

sized parts by individuals. Then in a screening step,

LASSO is performed on the first part of the data (with

the cross validation to select the shrinkage factor). In a

cleaning step, the standard OLS is implemented on the

second part of the data with non-zero variables selected

from the screening step, and the p values from a t test

can be obtained for each marker. A drawback of this

single-split method is that the result depends very much

on how the data is split. For improvement, Meinshausen

et al. (2009) suggested a multi-split method, in which the

previous procedure is repeated many times, and an

empirical distribution of the p value for each marker can

be obtained. Finally, an overall p value can be con-

structed based on that empirical distribution. Meinshau-

sen et al. (2009) demonstrated that the multi-split method

can be used for both family-wise error (FWER) control

and false discovery rate (FDR) control. The results from

their data analyses also indicate that this procedure has a

good performance in terms of error control for both high

and low dimensional data. Furthermore, Meinshausen

et al. (2009) also claimed this procedure cannot only be

applied to LASSO, but also to many other variable

selection methods such as Adaptive LASSO and Elastic

net.

Finally, one should be aware that the above-mentioned

concepts such as ‘‘correct non-zero coefficients’’ or ‘‘true

set of effective variables’’ are rather idealized quantities

which are used only to demonstrate the statistical proper-

ties of LASSO and the corresponding multi-split method

for hypothesis testing. In practice, a QTL is usually not

exactly located on any marker, so that we can only seek a

subset of markers which are linked to QTLs, and use their

locations to approximate the QTL positions. In that case,

the definition of ‘‘correct non-zero coefficients’’ is not quite

obvious.

Bayesian interpretation of LASSO

Tibshirani (1996) showed that the ‘1 norm penalty

k
Pp

j¼1 jbjj is proportional to the logarithm of the product

of p independent double exponential distributions (or

Laplace distributions) with rate k; so that LASSO estimates

can be regarded as the posterior mode estimates under the

double exponential prior distributions for the regression

coefficients as

pðbÞ ¼
Yp

j¼1

k
2

expð�kjbjjÞ: ð10Þ

Note the likelihood function can be specified as
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pðyjb; r2
eÞ ¼

Yn

i¼1

1ffiffiffiffiffiffiffiffiffiffi
2pr2

e

p exp �
ðyi � b0 �

Pp
j¼1 xijbjÞ2

2r2
e

 !
;

ð11Þ

so that under a Bayesian posterior distribution, the residual

variance r2
e needs to be taken into account, and be treated

as a parameter just like regression coefficients (in the

standard LASSO, it is also possible to include r2
e into the

model, but this is not usually considered).

Inspired by the fact that a double exponential distribu-

tion can be written as a scale mixture of normals

k
2

expð�kjbjÞ ¼
Z1

0

1ffiffiffiffiffiffiffiffiffiffi
2pr2
p exp �b2=2r2

� �

� k2

2
exp � k2r2

2

� �
dr2; ð12Þ

a hierarchical posterior model with the following prior

settings:

1. p(b0) � 1,

2. pðr2
eÞ / 1

r2
e
;

3. pðbjÞ / Nðbjj0; r2
j Þ;

4. pðr2
j Þ / Expðr2

j j k
2

2
Þ;

have been proposed (see Park and Casella 2008 and Yi and

Xu 2008).

A Gibbs sampling algorithm can be used to simulate

dependent samples from the posterior distribution. Next,

the posterior mean of these samples can be used as the

point estimates of the marker effects, and in addition a

credible interval for each marker effect can also be con-

structed and used to judge QTL signals (Kyung et al. 2010;

Li et al. 2011). Different from standard LASSO in which

the shrinkage factor k needs to be selected explicitly, in

Bayesian LASSO, a prior distribution can be assigned to

k2, so that the value of k can be estimated as well as other

model parameters. A typical choice is to use a conjugate

gamma prior Gammaða; bÞ for k2, where a [ 0 and b [ 0

are predetermined hyperparameters. For example, a [ 0

and b [ 0 can be set to be small values (say 10-4), so that

the priors are non-informative (Li et al. 2011).

In addition, Bayesian hierarchical models of Elastic net

and Adaptive LASSO can be built correspondingly in a

similar manner (see, for example, Li and Lin 2010, and

Mutshinda and Sillanpää 2010), which is beyond the scope

of the discussion in this review.

Finally, based on the double exponential prior (10), a

biological interpretation has been given to the shrinkage

factor k in LASSO. Legarra et al. (2011) noticed that a

relationship between the variance of marker effects and k
can be represented as VarðbÞ ¼ 2

k2 : Therefore, k plays a key

role to determine the shape of the distribution of the SNP

effects in the LASSO model. In addition, a further rough

relationship can be established between k and the genetic

variance r2
g in a population as VarðbÞ ¼ 2

k2 ¼
r2

g

2
Pp

j¼1
qjð1�qjÞ

;

where qj is the allele frequency of the first allele at the jth

marker.

LASSO for mixed models

So far, we have considered using the pure genetic marker

information to construct a linear regression model, which

assumes equal relatedness among the sample individuals.

One problem in plant (or animal) breeding is that the group

relatedness/pedigree structure often exists among the

samples (i.e. a subgroup of individuals may be more clo-

sely related than others), so that the above-mentioned

assumption is not quite reasonable. Omitting relatedness in

the model may be causative for false positives or for

reduced predictive ability (see Sillanpää 2011; Solberg

et al. 2009). A linear mixed effect model has been sug-

gested to take the relatedness/pedigree structure into

account (Jannink et al. 2001; Yu et al. 2006), which can be

represented in the following matrix form:

y ¼ b0 þ Xbþ Zuþ e; ð13Þ

where the intercept b0, the genetic fixed effects b ¼
½b1; . . .; bp�T; the design matrix containing genotypes

X ¼ ½xij� (i = 1, …, n, j = 1, …, p) and the error terms

e ¼ ½e1; . . .; en�T follow the previous definitions. In addition,

u ¼ ½u1; . . .; un�T is a vector of random effects that follows a

multivariate normal distribution MVNð0; Ar2
aÞ; where A is

an additive genetic relationship matrix which can be

constructed based on the pedigree information and ra
2 is the

variance of the random additive genetic effects u:Finally, Z is

the design matrix for the random effects. A LASSO estimator

under a mixed effect model can be defined as

b̂; r̂2
a; r̂

2
e ¼ arg min

b;r2
a;r

2
e

½log jVj þ ðy� b0 � XbÞTV�1

ðy� b0 � XbÞ þ k
Xp

j¼1

jbjj�; ð14Þ

where V ¼ r2
aZAZT þ r2

eI: In addition, mixed Adaptive

LASSO and mixed Elastic net can be defined similarly.

More complicated non-convex programming algorithms

can be used to compute the solution paths under these

models. Wang et al. (2010) proposed a mixed Adaptive

LASSO procedure for analyzing QTL effects. In a simu-

lation study, they showed that a mixed Adaptive LASSO

model performed better than LASSO and Adaptive LASSO

with only fixed effects to control the false positives caused

by the population structure among the data.
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On the other hand, in Bayesian LASSO settings, we may

consider the distribution MVNð0;Ar2
aÞ as the prior distri-

bution of random effects u: Under such circumstances,

their variance ra
2 can be assigned with an non-informative

prior pðr2
aÞ / 1

r2
a
; so that u can be incorporated into the

hierarchical model, and be sampled as the other parameters

using MCMC. De Los Campos et al. (2009) applied such a

Bayesian mixed LASSO method for predicting phenotypic

values in wheat and mouse data sets. They compared three

models using (1) sole pedigree information, (2) sole marker

information, (3) both information sources, and they found

that the Bayesian mixed LASSO with both pedigree and

markers included showed the best predictive ability.

Software tools

The coordinate descent algorithm for computing the LASSO,

Elastic net and Adaptive LASSO solution path can be

implemented by the Glmnet software package (Friedman

et al. 2010; Simon et al. 2011). The package has been

incorporated into both R and Matlab with the core of the

coordinate descent algorithm written in Fortran. It can be

efficiently implemented even on a large scale data set, and it

should be a suitable tool for both QTL mapping and genomic

selection. Specifically, Glmnet is not only designed for

Gaussian linear regression model, but also for binomial,

multinomial (with unordered response), Poisson and Cox’s

proportional hazard regression models. Thus, potentially, the

discrete trait data and survival data can be analyzed by

Glmnet as well. Besides, various R packages for imple-

menting other algorithms including LARS for solving the

LASSO problem have been summarized in Hesterberg et al.

(2008). For tools especially involved in discrete traits, see

Ayers and Cordell (2010). Software tools are also available

for Bayesian LASSO. Pérez et al. (2010) developed R/BLR

package which implements both Bayesian LASSO (De Los

Campos et al. 2009) and Bayesian Ridge regression for

genomic selection. The R/BLR uses mixed models and

allows inclusion of pedigrees in addition to the markers. In

addition, another package R/fGWAS developed by Li et al.

(2011), implements Bayesian LASSO for genome-wide

association studies. Finally, the software tools for imple-

menting mixed LASSO mentioned in the last section are

generally limited. Some R codes for implementing mixed

Adaptive LASSO on QTL mapping are available from the

first author of Wang et al. (2010). More efforts are needed to

develop mixed LASSO software tools for genomic selection.

Example analyses

In our case study, we consider the following three data sets:

(1) a small scale real data set from North American Barley

study (Tinker et al. 1996), (2) a large scale simulated data

from XII QTL MAS Workshop (Lund et al. 2009; Crooks

et al. 2009), and (3) a CIMMYT wheat data (Crossa et al.

2010). The first two data sets are used for both QTL

mapping and genomic selection, and the third data set is

only used for genomic selection.

Barley data

This is the well-known North American Barley data (Tin-

ker et al. 1996). The mapping population consists of 145

doubled haploid lines (n = 145), each grown in a range of

environments. A total of 127 markers were genotyped,

covering 1270 cM of the barley genome, with the average

distance between markers of 10.5 cM. For the marker data,

one genotype (AA) is coded as 1 and the other (BB) as -1.

Around 5.05 % of genotype data were missing. Missing

marker data were handled in all methods as the prepro-

cessing of that data set once before the analysis. In the

preprocessing, each missing marker genotype is replaced

by its conditional expectation estimated from flanking

markers with known genotypes. Detailed information of

this method can be found in Haley and Knott (1992), or in

Siegmund and Yakir (2007). Seven traits including yield,

heading, maturity, height, lodging, kernel weight, and test

weight were measured for each plant. We selected kernel

weight as the phenotype used in the analysis. Before the

analysis, the average phenotypic value for each line was

calculated over such environments which were not missing,

and was used as a phenotype for the analysis similarly as in

Xu (2003).

QTL mapping

The LASSO, Elastic net and Adaptive LASSO are imple-

mented for QTL problem using Matlab/Glmnet

(Friedman et al. 2010), and the Bayesian LASSO was

implemented by our own Matlab code (Li and Sillanpää

2012). For LASSO, Elastic net and Adaptive LASSO, we

first implemented those methods on the full data set to

obtain the estimates of the marker effects, and then we used

the multi-split methods of Meinshausen et al. (2009) to

calculate the p values for each locus (only the FWER

control is considered). We set the significance threshold as

0.05, so that a p value smaller than 0.05 indicates the

corresponding locus as a QTL. We considered both fivefold

cross validation and BIC as the criteria to choose the

shrinkage parameters. The shrinkage factor selection for

LASSO was done in a standard way as introduced above.

For Elastic net, we followed a strategy from Zou and

Hastie (2008) to find a combination of a and k. First, a grid

of values of a was defined as {0.1, 0.2, …, 0.8, 0.9}. For

each of them, we used either CV or BIC to find the optimal
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value k̂ out of a set of 100 ks (automatically generated by

the Glmnet program), and recorded the corresponding

prediction error. Next, an optimal value of a denoted as â
was selected which gives the smallest prediction error. For

Adaptive LASSO, we performed a standard LASSO with

CV for tuning k and used these LASSO estimates to con-

struct the weights. Since the LASSO estimators are sparse,

we modified the weights as

wj ¼
1

jblasso;jj þ 1
n

; ð15Þ

similarly as Zou and Zhang (2009). Finally, for Bayesian

LASSO, we assigned a non-informative prior

Gammað0:0001; 0:0001Þ to k2; and this prior setting was

used through our example analyses. Specifying the

parameters in the gamma prior as small values were sug-

gested in Li et al. (2011). We totally generated 65,000

dependent samples from the Gibbs sampler, where the first

5,000 samples were considered as burn-in, the remaining

were stored in every 30th, so that eventually we obtained

2,000 samples. The convergence was assessed by visual

inspection of the trace plots of several parameters. The

posterior mean of those samples was used as the point

estimates for the marker effects. Furthermore, the 95 %

credible intervals (CI) were also calculated, and if the CI

for a marker did not contain zero, the corresponding mar-

ker was judged to be linked to a QTL. For simplicity,

we used the abbreviation forms as L-CV, L-BIC ,EN-CV,

EN-BIC, AL-CV, AL-BIC to represent LASSO, Elastic net

and Adaptive LASSO with either CV or BIC to select the

value of k, and BL for Bayesian LASSO, respectively.

Figure 1 shows the estimated marker effects using all

the methods we mentioned above, and Table 1 shows the

markers which are judged to be linked to QTLs and their

corresponding p values (or credible intervals). Clearly, as

expected we can see the different patterns of the estimates

obtained by different methods. Compared to LASSO,

Elastic net tends to assign average effects to the markers

which are highly correlated. On the other hand, Adaptive

LASSO tends to provide a sparser estimate than LASSO,

and does not shrink those marker effects with large abso-

lute values as much as LASSO does. Furthermore, it is

obvious that the BIC method can lead to sparser models

than fivefold cross validation. Also in the hypothesis test-

ing procedure, more QTL signals are detected if BIC is

used for the shrinkage factor selection in the screening step

for LASSO and Elastic net. Finally, the estimates from BL

show a quite different pattern. BL does not shrink any

marker effect exactly to zero, probably due to the fact (1)

the hierarchical (scale mixture) posterior model is not

exactly the same as the true LASSO model and (2) we

consider the posterior mean instead of the posterior mode

as the point estimate. However, the QTLs detected in

Bayesian LASSO does not differ much from those obtained

by the other methods. In fact, markers 2, 12, and 102,

which were found to be significant in most approaches,

were close to the major QTLs detected by the interval

mapping approach in Tinker et al. (1996).

Genomic selection

Here we consider the cross validation error (see Table 2) as

the measure of predictive ability. For L-CV, EN-CV and

AL-CV, we naturally report the lowest CV-error corre-

sponding to the optimal shrinkage factor k̂ we chose. On the

other hand, in L-BIC, EN-BIC and AL-BIC, we performed

the fivefold CV only based on the optimal shrinkage factor

selected by BIC to evaluate their predictive abilities. For

each method, we repeatedly ran the fivefold CV for 100

times and report the average performance. Usai et al. (2009)

also averaged over many CV replications. This may help to

reduce the biasness of a prediction error estimate caused by

randomly splitting data in a CV procedure. AL-CV tends to

give the smallest CV error, followed by AL-BIC, and then

EN-CV. On average, the prediction tends to be optimized at

â ¼ 0:5570 for EN-CV, meaning that it takes equivalent

strength from ‘1 and ‘2 norm penalties. Furthermore,

Bayesian LASSO tends to provide slightly better prediction

than L-CV, although it does not shrink any marker effect to

exact zero. It is also interesting to see that L-BIC, EN-BIC

(â ¼ 0:9) and AL-BIC shows less predictive abilities than

the corresponding methods with CV to determine the

shrinkage factors, although they tend to produce much

sparser models. Finally, we further implemented a Ridge

Regression-BLUP (RR-BLUP) method on this data using

the R package rrBLUP (Endelman 2011). The method RR-

BLUP refers to a special case of Ridge regression with the

shrinkage factor fixed to be k ¼ r2
e

r2
g
; the ratio of the residual

variance and the genetic variance of each marker. In the

rrBLUP package, those variance components were esti-

mated by the restricted maximum likelihood (REML)

approach (Patterson and Thompson 1971). In this example,

the predictive performance of RR-BLUP is better than

L-BIC and is equivalent with EN-BIC, but is worse than all

the other approaches.

Simulated data

This data set was originally simulated for XII QTL MAS

Workshop 2008, Uppsala (http://www.computationalgenetics.

se/QTLMAS08/QTLMAS/DATA.html). A population of

individuals with seven recorded generations was simulated.

The first recorded generation consists of 15 males and 150

females. The other six generations with 1,500 individuals

426 Theor Appl Genet (2012) 125:419–435

123

http://www.computationalgenetics.se/QTLMAS08/QTLMAS/DATA.html
http://www.computationalgenetics.se/QTLMAS08/QTLMAS/DATA.html


for each were simulated by crossing 15 males and 150

females randomly selected from the last generation. The

first four generations consisting of 4,665 individuals were

considered as the training data set. For each of the last three

generations, 400 individuals were chosen randomly, and

the total 1,200 individuals constructed the validation data

set. For each individual, 6,000 biallelic markers evenly

distributed in six chromosomes with length of 100 cM for

each, were genotyped. The constant genetic distance

between every two markers was 0.1 cM. In addition, 50

simulated QTLs with their genomic locations, additive

effects, and genetic variances were known. 15 of them are

considered as major QTLs (M-QTL), and the remaining are

defined as secondary QTLs (S-QTL). Finally, the true

genomic breeding values for individuals in the training data

set were also listed on the website given above to be used

for evaluating the prediction accuracy. More information of

the data set is available in Lund et al. (2009).

Fig. 1 In barley data, the estimated coefficients, regarded as the

marker effects are plotted against marker locations along the genome

for a L-CV, b L-BIC, c EN-CV, d EN-BIC, e AL-CV, f AL-BIC, and

g BL. A red solid line indicates the location of a QTL detected by the

multi-split method of Meinshausen et al. (2009) for LASSO, Elastic

net and Adaptive LASSO, and by credible interval test for Bayesian

LASSO
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QTL mapping

We applied the above mentioned four methods (but not

RR-BLUP) on the simulated training data with 4,665

individuals. Here we did not take the relationships among

individuals into consideration. For each method, we used

the same strategies to determine the tuning parameters, and

judge the QTL signals as we did in the barley data analysis.

The estimated marker effects are shown in Fig. 2. L-CV

and EN-CV tends to produce over two hundred non-zero

estimates which cover almost all the genomic regions of

true QTL effects (including both M-QTL and S-QTL), but

in addition they also produce many spurious signals (i.e.

non-zero estimates that are located far from the true sim-

ulated QTLs). In contrast, L-BIC and EN-BIC produce

fewer non-zero effects. In addition, AL-CV and AL-BIC

tend to produce even fewer non-zero effects, but they miss

at S-QTL positions. In addition, LASSO and Elastic net

tend to underestimate the effect sizes of M-QTLs, but

Adaptive LASSO tend to give more precise estimates.

Finally, Bayesian LASSO tends to significantly underesti-

mate almost all the QTL effects, and cannot provide clear

separations between QTLs and non-QTLs.

Based on Crooks et al. (2009), if a reported QTL is

located within 5 cM of a simulated M-QTL, it is consid-

ered as a correct identification of that QTL. The mapped

positions of QTLs found by different methods are shown in

Table 3. The multi-split testing method with AL-BIC and

AL-CV succeeded in identifying 13 M-QTLs, followed by

L-CV detecting 11 M-QTLs, L-BIC and EN-BIC detecting

8 M-QTLs, and EN-CV detecting 6 M-QTLs. Note that for

each of the above mentioned approaches, all the reported

QTLs are within 5 cM of at least one M-QTL, and some-

times there are more than one reported QTL located within

5 cM of a M-QTL. Crooks et al. (2009) also reported

the performance of several methods. According to them,

the ‘best’ method called LDHap identified 11 M-QTLs, and

the ‘worst’ methods LDLA1 and LDLA2 detected 7

M-QTLs. The results from the above methods seem to be

competitive with the previous published results. In addi-

tion, the 95% credible interval based on Bayesian LASSO

only reported one QTL, which is located close to M15. The

poor performance of the credible interval approach is likely

due to high collinearity among markers in the data.

Genomic selection

After obtaining the estimates of the marker effects from

training data with 4,665 individuals, the TBV can be cal-

culated based on the validation set with 1,200 individuals.

We consider (1) the correlation coefficient between TBV

and GEBV as corðTBV,GEBVÞ; (2) the regression coeffi-

cient of regressing TBV on GEBV as bðTBV,GEBVÞ (see

Meuwissen et al. 2001; Usai et al. 2009), and (3) the

Table 1 The indices of markers which are detected as QTLs and the

corresponding p values (in brackets) by the multi-split method of

Meinshausen et al. (2009) for LASSO, Elastic net and Adaptive

LASSO, and those detected as QTLs and the corresponding 95 % CI

(in brackets) by Bayesian LASSO for the barley data

Methods QTL signals and p values (or CI)

L-CV 2(1.10 9 10-3), 102(2.00 9 10-4)

L-BIC 2(1.18 9 10-2), 12(4.00 9 10-4), 13(2.00 9 10-4), 102(2.20 9 10-3)

EN-CV None

EN-BIC 2(1.22 9 10-2), 12(9.20 9 10-3), 13(1.00 9 10-4), 102(1.80 9 10-3)

AL-CV 2(4.10 9 10-3), 12(6.93 9 10-7), 13(1.44 9 10-4), 101(1.07 9 10-5), 102(3.17 9 10-9)

AL-BIC 2(2.06 9 10-2), 12(2.96 9 10-6),13(4.26 9 10-6), 101(1.49 9 10-7), 102(1.73 9 10-9)

BL 2([-1.1370 - 0.1606]), 43([0.0540 0.5792]), 101([-0.8958 - 0.0445]), 102([-0.3347 - 1.2456])

Table 2 The fivefold cross validation errors (CVE) for each method

and the number of non-zero markers (NNM) selected by them aver-

aged over 100 runs for the barley data

Methods CVE NNM

L-CV 1.4382 51.25

L-BIC 1.8902 15

EN-CV 1.3069 60.56

EN-BIC 1.5254 15

AL-CV 0.9367 37.43

AL-BIC 1.1009 20

BL 1.4282 127

RR-BLUP 1.5379 127

Fig. 2 In QTLMAS XII simulated data, the estimated coefficients

regarded as the marker effects (cross) are compared to the simulated

QTL effects (solid line) for a L-CV, b L-BIC, c EN-CV, d EN-BIC,

e AL-CV, f AL-BIC, and g BL. Black solid lines represent the major

QTLs, and blue solid lines represent the secondary QTLs. Red crosses
represents the location of QTLs detected by the multi-split method of

Meinshausen et al. (2009) for LASSO, Elastic net and Adaptive

LASSO, and by credible interval test for Bayesian LASSO

c

428 Theor Appl Genet (2012) 125:419–435

123



Theor Appl Genet (2012) 125:419–435 429

123



averaged cross validation error (repeated over 10 times for

BL, and 100 times for the others) only based on the training

data to evaluate the predictive ability of different methods.

The results were summarized in Table 4. L-CV produced

the highest corðTBV,GEBVÞ; followed by EN-CV (on

average â ¼ 0:5670). On the other hand, the cross valida-

tion error of EN-CV is the smallest. Both L-CV and EN-CV

have the bðTBV,GEBVÞ close to 1, meaning that they are

able to produce nearly unbiased prediction of true breeding

values. Furthermore, AL-CV and AL-BIC showed equiva-

lent predictive ability, and their results were slightly worse

than L-CV and EN-CV. L-BIC and EN-BIC (â ¼ 0:9)

produced lower prediction accuracies than L-CV and

EN-CV. In addition, Bayesian LASSO does not give quite

high prediction accuracy for this simulated data, probably

due to the fact that it provides too biased estimates of both

M-QTLs and S-QTLs. In addition, note that we assigned the

non-informative prior Gammað0:0001; 0:0001Þ to k2 as we

did in the barley data, which might not be an optimal choice

for genomic selection. Alternatively, we may use the CV to

choose a k2 or hyperparameters giving the highest predictive

accuracy, but that would require huge computation time.

This QTLMAS XII simulated data set has been inten-

sively used for evaluating prediction performances of other

methods based on the marker regression model. Compared

with the correlation coefficients corðTBV,GEBVÞ reported

in related literatures include 0.75 by RR-BLUP (Usai et al.

2009), 0.84 by BayesA (Usai et al. 2009), 0.84–0.87 by

Bayesian MCMC methods as reported in Lund et al. (2009),

0.85–0.87 by EMBayesB and 0.85 by ICE (Shepherd et al.

2010), the results obtained from LASSO, Elastic net and

Adaptive LASSO are also quite competitive. Finally, note

that, Usai et al. (2009) also applied the standard LASSO

method on the same QTLMAS XII simulated data. The

corðTBV,GEBVÞ obtained by them is slightly higher than

ours, because Usai et al. (2009) proposed a cross validation

procedure different from ours. First of all, in Eq. (7), they

used Pðyv; ŷvðkÞÞ ¼ corðyv; ŷvðkÞÞ as the metric of the pre-

diction in CV instead of the prediction error as we used.

Second, they also took the information of each individual’s

pedigree and family relationship into account when defining

training and validation data. Here, we focused more on a

comparison of different methods, and therefore we simply

used a more standard approach in statistics to perform cross

validation.

Wheat data

To further test the predictive ability of the involved

methods for plant breeding, we consider a wheat data set,

which is available from the R package BLR (Pérez et al.

Table 3 The locations (cM) of

the QTLs identified by (a)

L-CV, (b) L-BIC, (c) EN-CV,

(d) EN-BIC, (e) AL-CV, (f)

AL-BIC, and (g) BL, which is

located within 5cM of the

M-QTLs for the simulated data

If more than one QTLs were

found to be located within 5 cM

of a M-QTL, then only the

nearest QTL is reported. The

multi-split method of

Meinshausen et al. (2009) was

used to judge QTLs for LASSO,

Elastic net and Adaptive

LASSO, and credible interval

test was used for Bayesian

LASSO

Simulated QTL Estimated QTL

QTL Chr Loc L-CV L-BIC EN-CV EN-BIC AL-CV AL-BIC BL

M1 1 20.0 19.6 19.6 19.6 19.6 19.6 19.6

M2 1 40.0 41.4 40.2 40.2

M3 1 77.2 77.8 77.8 77.8 77.8 77.8 77.8

M4 2 27.4 27.0 27.0 27.0 27.1 27.1

M5 2 30.0

M6 2 48.6 48.3 48.3 48.3 48.3 48.4 48.4

M7 2 74.9 75.8 75.8

M8 3 14.9 14.9 14.9 14.9 14.9 14.9

M9 3 60.0 60.2 60.2 60.2 60.2

M10 4 3.2 3.3 3.3 3.3 3.2 3.3

M11 4 36.9 35.9 36.4

M12 4 76.1 76.9 76.5 76.5 76.5 76.5 76.5

M13 4 96.5 96.7 96.7 96.7

M14 5 5.1

M15 5 93.5 93.5 93.5 93.5 93.5 93.5 93.5 93.5

Table 4 The number of non-zero marker effects (NNM), the cross

validation error (CVE), the prediction accuracy based on the corre-

lation coefficient between TBV and GEBV (PA) and the regression

coefficient of regressing TBV on GEBV (RC) for L-CV, L-BIC,

EN-CV, EN-BIC, AL-CV, AL-BIC, and BL for the simulated data

Methods NNM CVE PA RC

L-CV 230.11 3.2503 0.8845 1.0711

L-BIC 50 3.4503 0.8221 1.3980

EN-CV 268.69 3.2323 0.8775 1.0557

EN-BIC 64 3.3937 0.8466 1.3385

AL-CV 25.78 3.3015 0.8663 1.1138

AL-BIC 26 3.3051 0.8667 1.1146

BL 6000 3.3234 0.7688 0.8591

430 Theor Appl Genet (2012) 125:419–435

123



2010). See also Crossa et al. (2010). The wheat data set

contains a set of 599 CIMMYT wheat lines, which were

genotyped using 1447 Diversity Array Technology (DArT)

markers. After removing markers with a minor allele fre-

quency lower than 0.05, the remaining 1,279 markers were

used for analyses. The trait was a 2-year average grain

yield in four environments. Here we treated four environ-

ments independently, and analyzed the trait corresponding

to each of them separately. In addition to the above men-

tioned methods, we also analyzed the data by RR-BLUP

and mixed Bayesian LASSO (MBL) with both genotype

and pedigree information. MBL is implemented by the R

package BLR (Pérez et al. 2010). The predictive ability of

each method was evaluated by cross validation (repeated

over 100 times) similarly as in the barley data example.

The results are summarized in Table 5. The orders of

predictive performance for those methods are similar

through the four environments. Different from barley and

simulated data examples, here RR-BLUP has better pre-

dictive performance than L-CV. EN-CV also produces

smaller cross validation error than L-CV. Interestingly, for

the four environments, the predictions are optimized at

a = 0.30, a = 0.32, a = 0.37 and a = 0.32 respectively

on average, indicating the ‘2 (Ridge regression) penalty is

preferable for this data. The performance of BL and MBL

is quite competitive as well. MBL provides the best pre-

dictive performance among all the methods for the first

environment, and provides the second best for the

remaining. The fact that MBL had better predictive ability

than BL shows the importance of including polygenic

effects into the model. These results jointly support the

polygenic architecture of the trait. Surprisingly, AL-CV

shows identical predictive ability to MBL for the first

environment, and its performance is the best for the other

three. Note that the behavior of AL-CV is quite different

from MBL and RR-BLUP, because it usually selects less

than 60 markers into the model. Finally, mixed LASSO,

mixed Elastic net and mixed Adaptive LASSO were not

performed due to the lack of the relevant software tools.

The performance of these methods are remaining for future

investigation.

Discussion

In this article, we have focused on discussing four penal-

ized regression methods including LASSO and its exten-

sions Elastic net, Adaptive LASSO and Bayesian LASSO

with their applications to QTL mapping and genomic

selection. Although in principle these methods can be used

for both identifying a correct subset of markers linked to

QTLs and predicting genome-enhanced breeding values.

These two tasks are quite different, and should be treated

separately.

The results from our example analyses indicate that a

model with good predictive ability may select a relatively

large number of markers with non-zero effects, which

contains some noisy signals in addition to the true QTLs.

More general discussions and theoretical justifications

about this point can be found in Bühlmann and van de Geer

(2011). Specifically, a simulated study performed by

Habier et al. (2007) showed that not only markers which

are in LD with QTLs, but also the markers capturing the

genetic relationships can contribute to the prediction

accuracy in genomic selection. In practice, cross validation

is a promising tool to determine the optimal penalty of a

method for prediction when the individuals are not so

correlated with each other. If a close genetic relationships

exist among the individuals (e.g. individuals with off-

springs) in the training data, the predictive accuracy esti-

mated by CV might be upward biased (Habier et al. 2007;

Dekkers 2010), and the optimal shrinkage factor deter-

mined by CV may not be the best for predicting

the breeding values of individuals from new generations.

Table 5 The fivefold cross validation errors (CVE) for each method and the number of non-zero markers (NNM) selected by them averaged

over 100 runs for the wheat data

Methods Environment1 Environment2 Environment3 Environment4

CVE NNM CVE NNM CVE NNM CVE NNM

L-CV 0.7938 137.37 0.8108 122.33 0.8906 87.21 0.8255 74.83

L-BIC 0.9082 8 0.9996 1.96 0.9997 2.53 0.9047 14.75

EN-CV 0.7550 212.2 0.7745 181.82 0.8570 148.24 0.7965 136.77

EN-BIC 0.9025 9 1.0006 2.76 1.0011 3.69 0.9046 15.77

AL-CV 0.7299 27.96 0.6179 57.55 0.7013 37.56 0.6987 36.91

AL-BIC 0.7475 20 0.6812 41.02 0.7990 22.53 0.7499 24.22

BL 0.7498 1279 0.7612 1279 0.8655 1279 0.7885 1279

MBL 0.7281 1279 0.7579 1279 0.8251 1279 0.7620 1279

RR-BLUP 0.7469 1279 0.7613 1279 0.8649 1279 0.7924 1279
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In this case, CV can be more carefully designed so that the

individuals from the latest generation are only used in the

validation set in order to obtain a model for better pre-

dicting the genomic breeding values of new generations

(Usai et al. 2009). Alternatively, the use of mixed LASSO

by including both pedigree and marker information into the

model may also be beneficial to analyze such kind of data.

On the other hand, in QTL/association mapping, we are

interested in detecting the markers which are only in LD

with the QTLs. LASSO and Elastic net do not hold the

variable selection consistency in general, and they often

tend to select some noisy signals. Although Adaptive

LASSO has better theoretical properties for consistent

variable selection, the difficulty about how to choose an

optimal k for correctly identifying the QTLs is still

remaining. BIC might be more suitable for this purpose as

a criterion to determine k, since it can usually lead to a

model with fewer estimated QTLs compared to CV.

However, Chen and Chen (2008) argued that BIC is still

too liberal for the variable selection in high dimensional

data (p [ n problem). A more reliable way to judge QTLs

is performing hypothesis testing, and obtain a p value for

each marker effect to control the false positive errors. Since

constructing a test statistic based on the estimates of

LASSO, Elastic net and Adaptive LASSO is difficult,

Wasserman and Roeder (2009) and Meinshausen et al.

(2009) suggested two-step procedures for obtaining p val-

ues. Both of them showed that their approaches can yield

asymptotic error controls under certain conditions. How-

ever, the multi-split method of Meinshausen et al. (2009)

should be a more stable approach than the single-split

approach of Wasserman and Roeder (2009). In our exam-

ple analyses, we tested the multi-split method, and obtained

a good performance on identifying the QTLs with large

effects and controlling false positives by tolerating some

false negatives. However, it requires a repeating procedure

that increases the time costs for computation, and may not

be optimal for large scale data. An alternative fast approach

is a two-step procedure proposed by Chen and Cui (2010),

where in the second stage, EBIC is used for selecting

QTLs. However, this achieves asymptotic FDR control

only when the consistent variable selection of LASSO is

assumed, which is more restrictive than the screening

property assumed by Meinshausen et al. (2009). Other

multi-stage strategies for testing QTLs based on LASSO or

Adaptive LASSO estimates are provided in Wu et al.

(2009) and Sun et al. (2010), but they are rather heuristic

approaches that lack theoretical justifications, and should

be used carefully. Another recently proposed method of

interest is stability selection (Meishausen and Bühlmann

2010; Alexander and Lange 2011). In summary, identifying

QTL signals is a more challenging problem than predicting

genomic breeding values under a LASSO procedure, and it

seems that currently there is no standard methodology for

this task. Therefore, the problem of post-LASSO QTL

identification needs more investigation in future.

The performance of a method for both variable selection

and prediction will also depend on the data. According to

Tibshirani (1996), LASSO would perform better than

Ridge regression for shrinkage estimation on a data with a

small portion of variables having large effects and the

others with negligible effects, and Ridge regression would

be more suitable for the data with many variables having

small effects. From the theoretical perspective, Bühlmann

and van de Geer (2011) discussed that LASSO are not able

to select many explanatory variables with very small

effects. Moreover, LASSO can only select at most n vari-

ables when p [ n. Thus, if it happens that there are many

QTLs with small effects in a data set and their cumulative

contribution to the trait is large, LASSO may work poorly

on detecting causal genes and estimating genomic breeding

values. From the application perspective, Daetwyler et al.

(2010) compared the performance of Bayes B method, a

Bayesian variable selection method (Meuwissen et al.

2001) to GBLUP (BLUP with realized relationship matrix),

which has been shown to be equivalent to RR-BLUP

(Habier et al. 2007; VanRaden 2008), for genomic selec-

tion on a series of simulated data sets. They concluded that

when the total number of QTLs was small, variable

selection methods such as Bayes B had better performance

than GBLUP, but when the total number of QTLs was

large, GBLUP tended to be dominant over Bayes B. In a

related simulation study, Clark et al. (2011) also found that

GBLUP produced slightly higher prediction accuracy than

Bayes B when the data consisted of a large number of

QTLs with small effects. As a variable selection method,

LASSO may have a behavior similar to the Bayes B

method, and may not be suitable for a data set with large

number of QTLs. Some evidences of this behavior may

also be found in the results of our example analyses.

LASSO shows better predictive ability than RR-BLUP for

the simulated data with only 50 QTLs among 6,000

markers, but shows worse predictive ability for the wheat

data. In addition, Usai et al. (2009) analyzed a mouse data

set (Valdar et al. 2006), where they reported that for the

traits ‘‘weight growth slope’’ and ‘‘body length’’, RR-

BLUP showed slightly better predictive ability than

LASSO. Therefore, it is important to choose a suitable

method based on the prior knowledge on genetic archi-

tecture. Particularly, the Elastic net method may be appli-

cable to a data set with no pre-knowledge of genetic

architecture available, since it provides a possibility to

determine an optimal combination of ‘1 and ‘2 norm pen-

alties. Such an example can be found in Harris and Johnson

(2010). Finally, in all three example analyses, we also

observed that the Adaptive LASSO method performs
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constantly well. This is surprising because Adaptive

LASSO always selects fewer markers with non-zero effects

than LASSO, but can have good predictive performance

even when RR-BLUP is superior to LASSO. Empirical

evaluation of this method deserves more attention.

Finally, the MCMC-based Bayesian LASSO and its

related approaches have also gained increasing interest and

have been applied to several QTL mapping and genomic

selection studies. Compared to standard LASSO, an

advantage of Bayesian LASSO is that it can provide the

interval estimates in addition to the point estimates, which

can be used for identifying QTLs. In addition, relatively

non-informative priors can be assigned to the shrinkage

factor, so that tuning can be avoided. However, we should

be aware that the posterior mean estimates obtained from

the Bayesian LASSO can be quite different from the

LASSO estimates. First, Bayesian LASSO cannot produce

as sparse model as LASSO can (Sun et al. 2010). Second,

from the results of our data examples, Bayesian LASSO

tends to underestimate those marker effects even more

severely than LASSO. In fact, Park and Casella (2008)

showed empirically that the Bayesian LASSO estimates

tended to be a compromise between the LASSO and ridge

regression estimates. Thus, it may not be an optimal

method for data having only a small number of QTLs with

large effects. This point of view needs to be further studied.
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Appendix: Coordinate descent algorithm

Initially, the marker data are assumed to be standardized

and phenotype data to be centered so that 1
n

Pn
i¼1 xij ¼ 0;Pn

i¼1 x2
ij ¼ 1 for j = 1, …, p, and 1

n

Pn
i¼1 yi ¼ 0: The

Elastic net problem (LASSO: a = 1, Ridge regression:

a = 0) can be specified as

b̂ ¼ arg min
b

1

2N

Xn

i¼1

yi �
Xp

j¼1

xijbj

 !2
8
<

:

þ k½ð1� aÞ 1
2

Xp

j¼1

b2
j þ a

Xp

j¼1

jbjj�
)
: ð16Þ

The principle of the coordinate descent is that when

minimizing the Elastic net target function, the algorithm

updates each component bj successively in the direction

giving the largest decrease of the objective function by

fixing all other components. Assuming the current estimate

of bj is bj
(0), and we have already updated the estimate of

b1; b2; . . .; bj�1 as bð1Þ1 ; bð1Þ2 ; . . .; bð1Þj�1; the estimate of bj
(1)

can be updated as

bð1Þj ðkÞ ¼
Sðbð0Þj þ 1

N

Pn
i¼1 xijri; kaÞ

1þ kð1� aÞ ; ð17Þ

where S(a, b) is the thresholding function defined as

Sða; bÞ ¼ signðaÞ �maxðjaj � b; 0Þ; ð18Þ

and ri ¼ yi �
Pp

j xijbj for i ¼ 1; . . .; n is the residual, which

should be updated as ri ¼ ri þ xijðbð0Þj � bð1Þj Þ when bð1Þj is

ready. The algorithm updates each component of b in a

cyclic manner as 1; 2; . . .; p; 1; 2; . . .; p; . . .; until the solu-

tions converge.

The coordinate descent algorithm can be used for

Adaptive LASSO as well. In each iteration, we use the

update function:

bð1Þj ðkÞ ¼ S bð0Þj þ
1

N

Xn

i¼1

xijri;
k

jb̂init;jj

 !
; ð19Þ

where b̂init;j are certain initial estimates, for example, from

OLS or standard LASSO.

For more information, see Friedman et al. (2007) and

(2010).
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Bühlmann P, van de Geer S (2011) Statistics for high-dimensional

data: methods, theory and applications. Springer, New York

Burgueño J, DeLos Campos G, Weigel K, Crossa J (2012) Genomic

prediction of breeding values when modeling genotype 9 envi-

ronment interaction using pedigree and dense molecular mark-

ers. Crop Sci 52:707–719

Chen J, Chen Z (2008) Extended Bayesian information criteria for

model selection with large model spaces. Biometrika 95:759–

771

Chen J, Cui W (2010) A two-phase procedure for QTL mapping with

regression models. Theor Appl Genet 121:363–372

Cho S, Kim K, Kim YJ, Lee JK, Cho YS, Lee JY, Han BG, Kim H,

Ott J, Park T (2010) Joint identification of multiple genetic

Theor Appl Genet (2012) 125:419–435 433

123



variants via elastic-net variable selection in a genome-wide

association analysis. Ann Hum Genet 74:416–428

Clark SA, Hickey JM, van der Werf JHJ (2011) Different models of

genetic variation and their effect on genomic evaluation. Genet

Sel Evol 43:18

Crooks L, Sahana G, De Koning DJ, Lund MS, Carlborg Ö (2009)
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Legarra A, Robert-Granié C, Croiseau P, Guillaume F, Fritz S (2011)

Improved Lasso for genomic selection. Genet Res 93:77–87

Li Q, Lin N (2010) The Bayesian elastic net. Bayesian Anal

5:151–170
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Pérez P, DeLos Campos G, Crossa J, Gianola D (2010) Genomic-

enabled prediction based on molecular markers and pedigree

using the BLR package in R. Plant Genome 3:106–116

Piepho HP (2009) Ridge regression and extensions for genomewide

selection in maize. Crop Sci 49:1165–1176

Piepho HP, Ogutu JO, Schulz-Streeck T, Estaghvirou B, Gordillo A,

Technow F (2012) Efficient computation of ridge-regression

BLUP in genomic selection in plant breeding. Crop Sci 52:1093–

1104

Shepherd RK, Meuwissen THE, Woolliams JA (2010) Genomic

selection and complex trait prediction using a fast EM algorithm

applied to genome-wide markers. BMC Bioinforma 11:529

Siegmund D, Yakir B (2007) The statistics of gene mapping.

Springer, Berlin
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